Balanced Network, Mean Field Arguments

Basic mean field argument: N E and I neurons. Assume random connectivity: prob. connection = K/N, connected neurons have strength (abs value) J_{XY}. Input to neuron is

$$I^X_i = \sum_j J_{ij}^{XE} r^E_j - J_{ij}^{XI} r^I_i + h^X_i$$

(h^X_i can incorporate threshold, $h - \theta$; so it is negative for subthreshold external input).

Then assuming inputs fire independently and as Poisson processes at given rates, with rates uncorrelated with weights $\langle J r \rangle = \langle J \rangle \langle r \rangle$ (all true in large-N limit). Consider updates in time bins of size 1, input is integrated over time bin. Letting mean rates per time bin be m_E, m_I, mean external input h^X; get mean input

$$\mu^X \equiv \langle I^X \rangle = K \left(J^{XE} m^E - J^{XI} m^I \right) + h^X$$

Spikes of type X received in timebin is Poisson process with mean $K m_x$, variance $K m_x$, so

$$\sigma^2_X \equiv (\delta I^x)^2 = K \left(J^{XE} \right)^2 m^E + K \left(J^{XI} \right)^2 m^I$$

For simplicity we’ve ignored (1) variance in nonzero weights (2) time variance in external inputs.

(Given equation for rates in terms of inputs, and Gaussian assumption on I's, get equation for m^E, m^I in terms of μ’s, σ’s)

Basic conundrum: we believe neural noise indicates neurons fire on fluctuations. How to get mean and variance to both be $O(1)$ given $K \gg 1$? (think: distance rest to threshold = 1). If J’s scale as $1/K$, mean is order 1 but variance is order $1/K$; if J’s scale as $1/\sqrt{K}$, variance is order 1 but mean is order \sqrt{K}.

Some ways out:

1. Neurons not really uncorrelated; can enhance variance for given mean.

2. K is not really big: real factor is $K m \tau$. If PSP’s have time constant τ, $V(t) = J e^{-(t-t_{sp})/\tau}$, mean voltage is $\bar{V} = J K m \tau$, variance is $J^2 K m \tau / 2$, standard deviation is $\sqrt{\frac{J^2}{2} K m \tau} = \bar{V} / \sqrt{2 K m \tau}$. Say $\tau = 10$ms, so denominator is $\sqrt{K m / 50}$Hz. For $K m = 1000 - 2000$Hz, this is $\sqrt{20} - 40$, i.e. $4.5 - 6.3$. Significant but not an order of magnitude.

E.g. if assume $J = 0.5$mV, find what’s in table below. And we’ve neglected additional sources of variance (temporal variance of inputs; variance of nonzero weights; neuronal correlations).
Km mean stdev
1000 5 mV 1.1 mV
2000 10 mV 1.6 mV
4000 20 mV 2.2 mV

Nonetheless suppose we take dilemma seriously: balanced network. Discovery (VV and Somp, 1996/1998): if $J \sim 1/\sqrt{K} \rightarrow KJ \sim \sqrt{K}$ and $h \sim \sqrt{K}$, then under simple conditions network will find “balanced” solution: mean of order 1 (and variance automatically of order 1 with this scaling).

Write J as J/\sqrt{K}, h as $h\sqrt{K}$ with new J’s, h’s of order 1. To lowest order in K: solution requires

$$\mu = \sqrt{K}(Jm + h) = O(1)$$

To lowest order in K,

$$Jm + h = 0 \rightarrow m = -J^{-1}h = \frac{1}{\det J} \begin{pmatrix} J_{II} & -J_{EI} \\ J_{IE} & -J_{EE} \end{pmatrix} \begin{pmatrix} h_E \\ h_I \end{pmatrix} \equiv \frac{1}{\det J} \begin{pmatrix} \Omega_E \\ \Omega_I \end{pmatrix}$$

where $\Omega_E = J_{II}h_E - J_{EE}h_I$, $\Omega_I = J_{EI}h_E - J_{EE}h_I$. Rates m are linear in inputs and are $O(1)$ (h/J). Then residual corrections to m of order $1/\sqrt{K}$ give $O(1)$ contribution to input which accounts for this $O(1)$ response.

Require positive rates, so need $\det J > 0$ and $\Omega_E, \Omega_I > 0$ or all < 0.\(^1\)

Assume m’s saturate at 0, maximal value for large negative or positive inputs. Want to avoid such unbalanced solutions. Look for solutions with $m_E = 0 \rightarrow m_I = h_I/J_{II}$ to leading order, so $\mu_E = \sqrt{K}(h_E - J_{EI}h_I/J_{II}) < 0$ or $\sqrt{K}\Omega_E/J_{II} < 0$, i.e. this requires $\Omega_E < 0$. (Can’t have $m_I < 0$ if $m_E \neq 0$, unless $h_I < 0$; but threshold is order 1, h of order \sqrt{K}, so h’s are > 0.)

What about solution with $m_E = m_I = m_{max}$? Then $\mu_X = \sqrt{K}m_{max}(J_{EX} - J_{IX} + h_X/m_{max})$ must be > 0 and $O(\sqrt{K})$. This requires $J_{IE} < J_{EE} + h_X/m_{max}$, $J_{II} < J_{EI} + h_X/m_{max}$. Can

\(^1\)Note meaning of Ω’s: can rewrite net input as

$$\mu_E = \sqrt{K}h_E \left(\frac{J_{EE}}{h_E} m_E - \frac{J_{EI}}{h_E} m_I + 1 \right)$$

$$\mu_I = \sqrt{K}h_I \left(\frac{J_{IE}}{h_I} m_E - \frac{J_{II}}{h_I} m_I + 1 \right)$$

$$= \sqrt{K}h_I \left(\left(\frac{\Omega_I}{h_E h_I} + \frac{J_{EE}}{h_E} \right) m_E - \left(\frac{\Omega_E}{h_E h_I} + \frac{J_{EI}}{h_E} \right) m_I + 1 \right)$$

So $\Omega_E > 0$ means, relative to FF input, inhibition is stronger to I than to E, while $\Omega_I > 0$ means the same for excitation.
eliminate this solution at $h = 0$ if $J_{IE} > J_{EE}$. Then if $m_I = m_{\text{max}}$, $m_E = (J_{EI} m_{\text{max}}) / J_{EE}$, so

$$\mu_I = \sqrt{K} \left(\frac{J_{IE} J_{EI}}{J_{EE}} m_{\text{max}} - J_{II} m_{\text{max}} \right)$$ \hspace{1cm} (10)$$

$$= \sqrt{K} \frac{\det J}{J_{EE}} m_{\text{max}}$$ \hspace{1cm} (11)$$

which is consistent, so doesn’t seem to eliminate possibility of I saturating. Also not clear unbalanced solutions are eliminated for $h > 0$. They claim $J_{IE} > J_{EE}$ eliminates all unbalanced solutions, but not clear to me.

At any rate, they claim only solution is balanced solution for $\det J > 0$, $\Omega_E > 0$, $\Omega_I > 0$, $J_{IE} > J_{EE}$.

Stability

Suppose equation of form

$$\tau_X \frac{d}{dt} m_X(t) = -m_x(t) + f(\mu_k)$$ \hspace{1cm} (12)$$

Then local stability given by

$$\tau_X \frac{d}{dt} \delta m_X = -\delta m_x + \sqrt{K} f'(\mu_k) J \delta m_X$$ \hspace{1cm} (13)$$